Bilinear wavelet representation of Calderón–Zygmund forms

نویسندگان

چکیده

We represent a bilinear Calder\'on-Zygmund operator at given smoothness level as finite sum of cancellative, complexity zero operators, involving smooth wavelet forms, and continuous paraproduct forms. This representation results in sparse $T(1)$-type bound, which turn yields directly new sharp weighted estimates on Lebesgue Sobolev spaces. Moreover, we apply the theorem to study fractional differentiation establishing Leibniz-type rules spaces are even simplest case pointwise product.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilinear Forms

The geometry of Rn is controlled algebraically by the dot product. We will abstract the dot product on Rn to a bilinear form on a vector space and study algebraic and geometric notions related to bilinear forms (especially the concept of orthogonality in all its manifestations: orthogonal vectors, orthogonal subspaces, and orthogonal bases). Section 1 defines a bilinear form on a vector space a...

متن کامل

Arens regularity of bilinear forms and unital Banach module spaces

Assume that $A$‎, ‎$B$ are Banach algebras and that $m:Atimes Brightarrow B$‎, ‎$m^prime:Atimes Arightarrow B$ are bounded bilinear mappings‎. ‎We study the relationships between Arens regularity of $m$‎, ‎$m^prime$ and the Banach algebras $A$‎, ‎$B$‎. ‎For a Banach $A‎$‎-bimodule $B$‎, ‎we show that $B$ factors with respect to $A$ if and only if $B^{**}$ is unital as an $A^{**}‎$‎-module‎. ‎Le...

متن کامل

A multivalued image wavelet representation based on multiscale fundamental forms

In this paper, a new wavelet representation for multivalued images is presented. The idea for this representation is based on the first fundamental form that provides a local measure for the contrast of a multivalued image. In this paper, this concept is extended toward multiscale fundamental forms using the dyadic wavelet transform of Mallat. The multiscale fundamental forms provide a local me...

متن کامل

Multiscale Fundamental Forms: A Multimodal Image Wavelet Representation

In this paper, a new wavelet representation for multimodal images is presented. The idea for this representation is based on the first fundamental form that provides a local measure for the contrast of a multimodal image. In this paper, this concept is extended towards multiscale fundamental forms using the dyadic wavelet transform of Mallat. The multiscale fundamental forms provide a local mea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pure and applied analysis

سال: 2023

ISSN: ['2578-5893', '2578-5885']

DOI: https://doi.org/10.2140/paa.2023.5.47